Hydrocarbon Anions with High Stability. Part 1. Syntheses and Properties of Extremely Stable Cyclopentadienide lons with 7*H*-Dibenzo[*c*,*g*]fluor-enylidenemethyl Substituents

Tomomi Kinoshita,* Hiromi Kimura, Iwao Nakajima, Shigeo Tsuji and Ken'ichi Takeuchi* Division of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University, Sakyo-ku, Kyoto 606-01, Japan

The title carbanions ($2a^-$ and $3a^-$) have been synthesized and found to be extremely stable as shown by $E_{ox} -0.20$ and -0.33 V and pK_a values of 3.3 and 4.7 for their conjugate acid hydrocarbons, respectively, and $2a^-$ is almost identically stable to the most stable all-hydrocarbon anion.

The highly stable all-hydrocarbon anions, $1a^{-1}$, $1b^{-2.3}$, $2b^{-4}$ $3b^{-2,3}$ (Fig. 1) and so on ⁵ have been synthesized, all containing dibenzofluorenylidenemethyl or fluorenylidenemethyl substituents which are able to contribute to the delocalization of the charge on the anion centre by cross-conjugation. Among them 1a⁻ is known to be the most stable hydrocarbon carbanion [pK_a (RH) 5.9 in aqueous HCl-DMSO [(dimethyl sulfoxide) (molar ratio 15:85)].¹ However, the central unit of $1a^{-}$ is a methyl anion $[pK_a(RH) 56]^6$ which is much less stable than a cyclopentadienyl anion $[pK_a (RH) 18.0]^6$ and indenyl anion $[pK_a (RH) 20.1]^6$ It could be anticipated that a hydrocarbon carbanion with the highest stability might be constructed by a combination of the most stable carbanion centre and most effective substituents for charge delocalization. In this work, cyclopentadienide and indenide ions $2a^-$ and $3a^-$ have been synthesized with dibenzofluorenylidenemethyl groups as the substitutions, and their stability evaluated from their oxidation potentials and pK_a values for their conjugate acids and compared with those for related carbanions.

The precursor hydrocarbon of $2a^-$, 2aH, was synthesized by a stepwise reaction \dagger of the bisimmonium salt 4^7 with 7*H*dibenzo[*c*,*g*]fluorenide 5^- ,⁸ as a brown powder in 21.0% overall yield (Scheme 1), in a similar manner to the preparations described for compounds 1aH,¹ $1bH^{2,3}$ and 2bH.⁴ An analogous reaction of 1-(dimethylamino)methylene-3-(dimethyliminiomethyl)indene perchlorate provided hydrocarbon 3aH,^{‡,9} a yellowish orange powder, in 32.8% overall yield (Table 1).

Although the structures of 2aH and 3aH can exist as six and three kinds of isomer, respectively (Figs. 2 and 3), ¹H and ¹³C NMR spectroscopy (Table 1) indicate that the hydrocarbons have the structure shown as C (Fig. 2) for 2aH and A or/and

Fig. 1 All-hydrocarbon anions with high stability

B (Fig. 3) for **3a**H.§ The isomer **A** should be preferred to **B** for **3a**H in terms of the steric crowding.

Compound 2aH dissociates completely into 2a⁻ in DMSO without any added base to show deep blue colour in analogy with 1aH. Compounds 3aH and 2bH also dissociate spontaneously into 3a⁻ and 2b⁻ in DMSO, but their dissociation is not complete ($K = 4.60 \times 10^{-5}$ and 1.40×10^{-5} for 3aH and 2bH, respectively),¶ whereas 3bH does not dissociate under the similar conditions.

The maximum absorption bands for $2a^-$ and $3a^-$ are shifted to the much longer wavelength than those for $2b^-$ and $3b^-$ (Table 2), corresponding to the wider expansion of π conjugation systems on both of the former.

The thermodynamic stability for $2a^-$ and $3a^-$ has been evaluated from the hydrocarbon acidity $[pK_a, (RH)]$ for their precursor hydrocarbons. The pK_a values for many carbon acids which are insoluble in water were usually estimated in DMSO solvents using the indicator method.^{6,10} Those for 2aH and **3aH** have been directly determined, in 90% aq. DMSO (v/v)containing various concentrations of HCl, by direct measurement of the pH values and the concentrations of the carbanions to indicate 3.3 and 4.7 (Table 2).^{||} For compounds 1aH, 2bH and 3bH, the pK_a values have been shown to be 3.2 [5.9 in aq. HCl-DMSO (molar ratio 15:85)¹], 6.3 and 7.6, respectively, by the same method. The accuracy of this method has been confirmed by the value for 9-cyanofluorene (Table 2).** These pK_a values demonstrate that (a) $2a^-$ is the most stable all-hydrocarbon cyclopentadienide ion and almost identically stable with 1a⁻ which was previously known as the most stable hydrocarbon anion¹ and (b) $3a^-$ is much more stable than $3b^-$ and $2b^-$ though it is not so stable

[†] The disubstituted intermediate which was separated by MPLC (SiO₂) was not completely pure, but used in the next step without further purification: $\delta_{\rm H}(60 \text{ MHz}; \text{CDCl}_3)$ 3.15 (br s, 6 H) and 7.50–8.65 (m, 29 H); 56.3% yield.

[‡] The synthetic method for **3bH** (ref. 2) could not be applied for **3aH**.

[§] A methylene proton (δ 4.03) is observed as singlet and a signal (δ 49.0) for methylene carbon as a triplet on coupling mode for **2aH** and a methyne proton (δ 5.36) and carbon (δ 50.6), and an olefinic proton (δ 6.44) are all doublet for **3aH**.

T Dissociation of 91% at 5.00 × 10^{-6} mol dm³, 25 °C for **3a**H and 70% at 8.58 × 10^{-6} mol dm⁻³, 25 °C for **2b**H.

^{II} Calculated by the use of the correlation $pK_a = pH - log[R^-]/[RH]$; the concentration of the carbanion has been measured by visible spectra. ****** (i) The pK_a value (8.9) for 9-cyanofluorene by our method is in fair agreement with that (8.3) in DMSO by the indicator method (ref. 6); (ii) in the pK_a value between 9-cyanofluorene and **1a**H or **3b**H, almost equal differences (5.7 or 1.3) are observed by our method to those (5.5 or 1.4) observed by the previous method (ref. 3).

Table	e 1	Spectral	and	physical	data f	for	2aH	and	3aH	I
-------	-----	----------	-----	----------	--------	-----	-----	-----	-----	---

	2a H	3aH
Form $\delta_{\rm H}{}^{a,b}$	Dark brown powder 4.03 (s, 2 H), 7.23–8.05 and 8.22–8.65 (m, 40 H)	Yellowish orange powder 5.24 (d, 1 H, J 10.8), 6.44 (d, 1 H, J 10.8), 6.90 8 15 (m 22 H)
$\delta_{C}{}^{a,c}$	49.0 (t), 118.1, 122.0, 122.4, 123.7, 124.8, 125.1, 125.5, 125.8, 126.6, 127.1, 127.3, 127.6, 128.3, 128.4, 128.7, 134.5, 134.8, 135.0, 136.1, 137.5, 138.0, 139.0, 139.7, 142.0, 145.3, 145.6, 147.6	50.6 (d), 118.2, 119.7, 120.3, 121.9, 122.7, 122.9, 125.0, 125.2, 125.4, 125.8, 126.0, 126.4, 126.9, 127.0, 127.2, 127.4, 127.7, 127.8, 128.5, 128.6, 128.8, 128.9, 130.7, 134.5, 134.9, 135.1, 135.4, 136.7, 136.8, 138.1, 138.3, 139.7, 139.9, 141.6, 142.0, 143.0, 145.0
ν/cm ⁻¹ ^d	3050w, 1580m, 1560m, 1510m, 1410m, 1400m, 1370m, 1340m, 1245m, 1220s, 1190s, 1150m, 1130m, 860m, 815vs, 750vs	3050m, 2980m, 1635m, 1515m, 1450m, 1350m, 1215m, 1135m, 1020w, 880s, 865s, 820vs, 760vs, 750vs, 700w
$\lambda_{max}(CH_2Cl_2)/nm$ (log $\epsilon/dm^3 \mod cm^{-1}$)	$\begin{array}{l} 306 \ (7.2 \times 10^4) \\ 326 {\rm sh} \ (3.8 \times 10^4) \\ 427 \ (4.1 \times 10^4) \\ 526 \ (3.7 \times 10^4) \end{array}$	228 (1.1×10^5) 353 (7.6×10^4) 314 (4.1×10^4) 333 (3.7×10^4) 349 (4.1×10^4) 364 (3.9×10^4) 412 (1.7×10^4)
 M.p./°C (decomp.) Found (Calc.) (%) Found M ^g Calc. M	267.0–268.5 C, 95.05; H, 4.6 (C, 95.27; H, 4.73) ^e 883 895.12	220.5-224.0 C, 94.9; H, 4.6 (C, 95.18; H, 4.82) ^f

^a In CDCl₃. ^b 270 MHz; *J*-values given in Hz. ^c 68 MHz; 28 and 38 signals were observed for 2aH and 3aH with 71 and 53 carbon atoms, respectively. ^d KBr disk. ^e For C₇₁H₄₂. ^f For C₅₃H₃₂. ^g By a vapour pressure equilibrium method.

Table 2 Oxidation potentials and λ_{max} for the carbanions and equilibrium acidity values (pK_a) and bond dissociation energies (E_d) for the conjugate acid hydrocarbons

Carbanion	$pK_a{}^{a,b}$	$E_{\rm pa}{}^c/{ m V}$	$E_{d}^{b,d}/$ kcal mol ⁻¹	$\lambda_{\max} e/nm$	log e
1a ⁻	3.2 (5.9 ^{f,g})	-0.18 (rev.)	73.5	697 <i>ª</i>	5.15#
1b ⁻	(10.4 ^h)	_	_	647 ⁱ	5.01 ^{<i>i</i>}
2a ⁻	3.3 (—)	-0.20 (irrev.)	73.1	656	5.00
2b ⁻	6.3 (—)	-0.34 (irrev.)	74.0	590	4.84
3a ⁻	4.7 (—)	-0.33 (rev.)	72.0	784	4.96
3b ⁻	7.6 (10.0 ^h)	-0.53 (rev.)	71.4	694 ^j	4.86 ^{<i>j</i>}
9-Cyanofluorenide	8.9 (11.4, ^h 8.3 ^j)	<u> </u>	_	—	_

^a In 90% aq. DMSO (v/v) (see text); in parentheses: calculated using the indicator method. ^b For the corresponding conjugate acid. ^c Measured vs. Ag/Ag⁺ in CH₃CN in the presence of tetrabutylammonium perchlorate as a supporting electrolyte; rev. reversible and irrev. irreversible. ^d $E_d = 1.37pK_a + 23.1E_{ox} + 55.9$ (refs. 6 and 11). ^e In DMSO, otherwise noted. ^f In aq. HCl-DMSO (molar ratio 15:85). ^g Ref. 1. ^h In DMSO-AcOH-AcONa; ref. 3. ⁱ In DMF; ref. 2. ^j In DMSO; ref. 6.

as $2a^-$ and $1a^-$. From these facts, it is concluded that (i) the replacement of fluorenylidenemethyl groups with dibenzofluorenylidenemethyl groups raises the stability of the carbanions by 3 pK_a units owing to the wider expansion of the π -conjugation systems and (ii) the stability of the carbanion is not enhanced by the replacement of the central methanide ion $1a^-$ with a cyclopentadienide ion, which could be ascribed to the inferior coplanarity of the whole π -conjugation system in $2a^-$ to that in $1a^-$.* and -0.33 V, respectively [vs. Ag/Ag⁺ in CH₃CN with TBAP (tetrabutylammonium perchlorate) as a supporting electrolyte: Table 2]. For one-electron oxidation, $2a^-$ shows very similar stability to that of $1a^-$ ($E_{ox} - 0.18$ V). A linear relationship, $E_{ox} = 18.2 - 1.18pK_a$ (r = 0.913), can be found between the

 $²a^-$ to that in $1a^-$.* The oxidation potentials for $2a^-$ and $3a^-$ have been measured by a cyclic voltammetry (CV) method: $E_{pa} = -0.20$ other hand, the two substituents

^{*} Examined by the use of molecular models: Although all the three bulky substituent groups overlap with each other and are unable to be coplanar with the anion centre in $1a^-$ and $2a^-$, the angles of torsion of the substituents in the latter are larger than those in the former. On the other hand, the two substituents are coplanar in $3a^-$.

Scheme 1 Reagents: i, 5H, NaOMe, pyridine; ii, H₂O; iii, 5H, BuLi; iv, HCl

Fig. 3 Three isomers of 3aH

 E_{ox} values (kcal mol⁻¹) for the anions $1a^-$, $2a^-$, $2b^-$, $3a^-$, $3b^$ and 22 other hydrocarbon anions^{6,11} including *tert*-butylcyclopentadienides ¹² and the pK_a (kcal mol⁻¹) of their conjugate acids.^{6,11,12} Bond dissociation energies ($E_d = 1.37pK_a + 23.1E_{ox} + 55.9$)^{6,11} are almost constant, with values of 73.5, 73.1, 74.0, 72.0 and 71.4 kcal mol⁻¹ for $1a^-$, $2a^-$, $2b^-$, $3a^-$ and $3b^-$, respectively. The cyclic voltammograms are irreversible for $2a^-$ and $2b^-$ whereas those for $1a^-$, $1b^-$, $3a^-$ and $3b^$ are reversible, indicating that the corresponding radicals to the former systems would be sufficiently unstable to undergo a coupling reaction, most probably at the C-3 position of the central cyclopentadienide ring where the steric crowding seems to be least.

References

- 1 R. Kuhn and D. Rewicki, Angew. Chem., 1967, 79, 648.
- 2 R. Kuhn, H. Fischer, D. Rewicki and H. Fischer, *Liebigs Ann. Chem.*, 1965, 689, 1.
- 3 R. Kuhn and D. Rewicki, Liebigs Ann. Chem., 1967, 706, 250.

- 4 C. Jutz, Angew. Chem., 1965, 77, 224.
- 5 A. Streitwieser, Jr., E. Juaristi and L. L. Nebenzahl in *Comprehensive Carbanion Chemistry*, Part A, eds. E. Buncel and T. Durst, Elsevier, New York, 1980, ch. 7 and refs. cited therein.
- 6 F. G. Bordwell, Acc. Chem. Res., 1988, 21, 456.
- 7 C. Jutz and H. Amschler, Chem. Ber., 1964, 97, 3331.
- 8 R. H. Martin, J. Chem. Soc., 1941, 679.
- 9 Z. Arnold, Coll. Czech. Chem. Commun., 1965, 30, 2783.
- 10 W. S. Matthews, J. E. Bares, J. E. Bartmess, F. G. Bordwell, F. J. Cornforth, G. E. Drucker, Z. Margolin, R. J. McCallum, G. J. McCollum and N. R. Vanier, J. Am. Chem. Soc., 1975, 97, 7006 and refs. cited therein.
- 11 F. G. Bordwell, J. A. Harrelson, Jr. and A. V. Satish, J. Org. Chem., 1989, 54, 3101.
- 12 T. Kinoshita, N. Murata, R. Fujita, Y. Yanagi and K. Takeuchi, J. Organomet. Chem., 1993, 458, 187.

Paper 3/06642H Received 5th November 1993 Accepted 22nd November 1993